
Everything You Always Wanted to Know 
about Radiative transfer

But Were Afraid to Ask



The spectrum corresponds to waves of various 
wavelengths and frequencies. 

We can divide the spectrum up into various 
regions, as is done in the next Slide 



The electromagnetic spectrum corresponds to 
waves of various wavelengths and frequencies. 

Energy is expressed in terms of Frequency and Absolute Temperature

E=kT, where k=1.38.10-16 erg/K (Boltzmann's constant) 

and E=hν, where h=6.425.10-17 erg/K (Planks Constant)



Specific Intensity Iν (or Iλ):  It is the 

same as flux (dEν/dt/ds) except

limited to those photons headed in a 

particular direction (i.e. confined 

within a certain solid angle dΩ):

dEν/dt= Iν ds cosθ dΩ dν

Note: The Specific Intensity, Iν(x,t;r),

is a scalar function of four variables (ν 

or λ plus position x, time, t, and r 

which is a unit vector with the 

direction and sense the line of 

propagation from the observer to the 

source (see Figure ds.n.r= ds.cosθ,

since n and r are both unit vectors).

UNITS
Specific Intensity Iν : ergs.s-1 cm-2 ster-1 Hz-1

Specific Intensity Iλ : ergs.s-1 cm-2 ster-1 cm-1

Differential Flux 

Fν = Iν cosθ dΩ: ergs.s-1 cm-2 Hz-1



The plane-parallel medium approximation

From this point onwards it is convenient to write: cosθ=μ.

The Specific Intensity , Iν(x, t ; r), is a scalar function of 

four variables. When the radiation field is constant or slowly 

varying (we may drop t from the parenthesis), and if we have 

axial symmetry with the z-axis along the axis of symmetry

the Specific Intensity, Iν(x, t ; r), simplifies to: Iν(z; θ),

where θ is  the angle between z and r (direction of the line of 

propagation from the observer to the source ).  

This is the case of vertical stratification or “plane parallel 

layers”; they often represent a local approximation to the 

curved shells of spherical objects such as the Sun. At the 

center of the Solar Disk θ=0, at the limb 900.



More About Specific Intensity (Iν)    (a)

Ιν is the monochromatic intensity; the total intensity is:

The Second equation permits us to switch from frequency to wavelength if 

necessary.

Since photons are the basic carrier of electro-magnetic interactions, intensity is

the basic macroscopic quantity to use in formulating radiative transfer. In

particular, the definition per steradian ensures that the intensity along a ray in

vacuum does not diminish with travel distance
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Exercise: Verify the unit 
conversion from Iν to Iλ. 



Remember

Ω=a/R2

and

dΩ=da/R2



More About Specific Intensity (Iν)
Invariance of the specific intensity

The area element dA emits radiation towards dA’. In the absence of 
any matter between emitter and receiver (no absorption and 
emission on the light paths between the surface elements) the 
amount of energy emitted and received through each surface 
elements is:
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More About Specific Intensity (Iν)
Example: Invariance of the specific intensity

Consider an extended source (angular width is greater than the angular 
resolution of our telescope) of surface s where a part ds is observed by a 
telescope of aperture A. Let the image on the focal plane (at f) be ds’. The 
energy received on A will be equal to the energy received on ds’ for a 
lossless instrument (see figure). We have, setting cosθ=1 for simplicity:
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From Specific Intensity (Iν) we may define the following:

Net Flux (Fν in erg s-1cm-2Hz-1) and mean intensity averaged over all 
directions(Jν in erg cm−2s−1Hz−1ster−1, just as for Iν). Remember: 
cosθ=μ.
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In axial symmetry with the z-axis (θ = 

0) along the axis of symmetry we have: 

dΩ=2π.sinθdθ.

For isotropic Radiation Field we have 

Jν = Iν and Fν =0.



More About Net Flux (Fν)
Example: Net Flux of Point source
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Absolute Luminocity: L =4πR F

LΩ A R
Energy Received by Aperture: E =L = =A F
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Lν is the total amount of energy 

radiated by a star of radius R per 

unit of time within a solid angle 

of 4π sterad. 

A telescope of aperture A, at 

distance D from the star, will 

receive the fraction of this energy 

within a solid angle Ω=A/D2.



More About Net Flux (Fν)
Example: Net Flux from a Uniformly bright sphere

Remember: In axial symmetry: dΩ=2π.sinθdθ.

Let us calculate the flux at an arbitrary distance from a sphere of 
uniform brightness (specific intensity) B=Ιν; the sphere is an 
isotropic source. At P, the specific intensity is Ιν (or B) and we have:
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Radiative Transfer Equation (a)
If a ray passes through matter, energy may be added or subtracted from 

it by emission or absorption. The specific intensity will not in general

remain constant. The emission coefficient, jν,(measured in ergs.s-1.ster-1. 

Hz-1g−1) represents the energy  locally added to the radiation dIν=jνρ
.dl, 

where l is the geometrical path length along the beam in cm.

Note: Sometimes you may see dIν =jν
.dl, jν units: 

ergs.s-1cm-3ster(-1)Hz-1 (ρ is included into jν and 

the emission coefficient will be the product jν
.ρ)



Radiative Transfer Equation (b)
If a ray passes through matter, energy may be added or subtracted from it by 

emission or absorption. The specific intensity will not in general remain 

constant. "Scattering” of photons into and out of the beam can also affect the 

intensity. We define the absorption coefficient, kν (cm2.g−1), by the following 

equation : dIν = −k ν
.ρ.I ν

.dl, representing the loss of intensity in a beam as it 

travels a distance dl. 

Note that: kν = κν + σν

κν: is extinction & σν: is Scattering

Some times we write: αvn=kvρ

(cross section times number density)

You may see dIν = −kν
.I ν

.dl, with kν units: 

cm-1 (ρ is included into kν; the absorption

coefficient will be the product kν
.ρ)



Radiative Transfer Equation (c)
Putting all (mostly the previous two slides) together we have:
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This equation demonstrates that the energy received by the observer 

within the solid angle dΩ will change due to emission and 

absorption from the material within the cylinder (See Fig). For θ 

being  the angle between the vertical  z and the line of propagation 

from the observer to the source we have dl.cosθ= dl.μ= dz, and we 

have:
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Radiative Transfer Equation (d)
We have seen in the previous slide the Radiative Transfer Equation in terms of specific 

intensity, optical depth and the source function Sν. This basic equation expresses that 

photons do not decay spontaneously so that the intensity along a ray does not change 

unless photons are added to the beam or taken from it; without such processes, 

intensity is invariant along rays.
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The optical depth dτν=-kνρdz (also monochromatic optical path 

length) is a dimensionless quantity that is measured along the 

beam across a layer of geometrical thickness dz. The RTE takes 

a particularly simple form if we replace dz with optical depth, 

dτν.

The source function Sν is equal to the Plank Function under 

Local Thermodynamic Equilibrium conditions.
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Radiative Transfer Equation (e): About the Source Function
We saw that the source function Sν is equal to the Plank Function under Local 

Thermodynamic Equilibrium conditions. It has the same units as the Specific 

Intensity Iν : ergs.s-1 cm-2 ster-1 Hz-1
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A simplified source function Sν

may be derived in the limiting case 

hν<<1. 

This simplified source function is  

the Rayleigh–Jeans 

approximation to Sν and applies 

to wavelengths in the range of 

radio waves



Radiative Transfer Equation (e’): 
Rayleigh–Jeans approximation and the brightness temperature.

Brightness temperature: A measure of radiation in terms of the 
temperature of a hypothetical blackbody emitting an identical amount of 
radiation at the same wavelength. The brightness temperature is 
obtained by applying the inverse of the Planck function to the measured 
radiation intensity Iν; in other words by solving Iν= Bν(Tb) for Tb.

The Rayleigh–Jeans approximation, Iν= 2kTb/λ2,provides an easier 
inversion. 

Exercise: Derive the Rayleigh-Jeans 
approximation from the Plank Function 



Radiative Transfer Equation (f): 
Formal Solution for semi-infinite atmosphere

The equation of transfer is a linear differential equation, which implies that a 

formal solution exists for the radiation field in terms of the source function. In 

this case we will integrate the equation from the position of the observer at τν=0, 

to infinite “depth” (semi-infinite atmosphere).

Exercise: Provide the intermediate 
steps. What is the formal solution if 
the atmosphere is not semi-infinite but 
extends from 0 to optical depth τν?
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The solution shows the result of contribution 

to the intensity observed by emission along 

the line of sight ∞ to 0, decreased at each 

point by the exponential factor e-t/μ.



Radiative Transfer Equation (f’): 
Formal Solution for semi-infinite atmosphere

Using the Rayleigh–Jeans approximation in the position of the source function 

we may write the equation of transfer (semi-infinite atmosphere) in terms of the

brightness temperature (T is a function of τν):
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Radiative Transfer Equation (g): 
The Eddington-Barbier approximation

The source function Sν(t,μ), where t stands for optical depth may be Taylor-

expanded about t=μ:Sν(t,μ)=Sν(t=μ,μ)+a(t-μ)+higher order terms (which are 

dropped). This result is substituted in the solution of the radiation transfer 

equation:
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The Eddington-Barbier approximation implies that the brightness (specific 

intensity) equals the Source function at optical depth μ. Therefore at the 

center of the solar disk observe optical depth μ=1 while at the limb the optical 

depth decreases, μ->0 hence  we observe  upper layers of the solar 

atmosphere. 



Radiative Transfer Equation (g’): 
The Eddington-Barbier approximation: Limb Darkening & Brightening on the Solar Disk

From the Taylor expansion, in the previous slide, Sν(t,μ)≈Sν(t=μ,μ)+a(t-μ), we

may write the source function: Sν(t)≈A+Bt. Substituting in the solution of the 

radiation transfer equation we have: Iν(0,μ)=Α+Βμ

From this we have Iν(0,1)=Α+Β, disk center and:
Exercise: Provide the 
intermediate steps.
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Radiative Transfer Equation (h): 
Constant Source Function Sν.

We start from the formal Solution to the Radiative Transfer Equation for 
an atmosphere of finite depth τν when the Source Function Sν is constant:
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Exercise: Verify the Solution of the 
Transfer Equation for finite depth



Radiative Transfer Equation (h’): 
Constant Source Function Sν (limiting cases τν<<1 and τν>>1)

• In the equations from the previous Slide we drop the μ for simplicity.

• The first term of the Solution represents an external source of radiation 
under the layer; this affects the result in the case of τν->0 which 
corresponds to optically thin (transparent) medium.

• The case τν->∞ represents the optically thick (opaque) medium 
approximation.

Exercise: Provide the intermediate 
steps
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Radiative Transfer Equation (h”): 
Constant Source Function Sν (limiting cases τν<<1 and τν>>1)

• In an optically thick layer (τν>>1) of constant T the Specific Intensity Iν equals the 
Plank Function. Further more the brightness temperature Tb equals T. From 
brightness temperature measurements in the metric radio emission we may verify 
that the coronal temperature is ~106K. On the other hand, transient radio emission 
(bursts) is characterized by a brightness temperature ~108K, which implies emission 
mechanisms of non thermal origin. 

• In an optically thin layer (τν<<0) of constant T the brightness temperature Tb
equals τν T.


