
Introduction to plasma

Part 04:  Magnetic Reconnection



Magnetic Reconnection

Magnetic reconnection is a phenomenon that is of particular 

importance in solar system plasmas. In the solar corona, it 

results in the rapid release to the plasma of energy stored in the 

large-scale structure of the coronal magnetic field, an effect that 

is thought to give rise to solar flares. Small-scale reconnection 

may play a role in heating the corona, and, thereby, driving the 

outflow of the solar wind. In the Earth's magnetosphere, 

magnetic reconnection in the magnetotail is thought to be the 

precursor for auroral sub-storms.
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The Induction equation: 
Governs the evolution of the 
magnetic field in a resistive-
MHD plasma. The first term on 
the right-hand side of this 
equation represents the 
convection of the magnetic field 
by the plasma flow. The second 
term describes the resistive 
diffusion of the field through the 
plasma. The relative magnitude
of the terms is conventionally 
measured in terms of magnetic 
Reynolds number Rm. When 
Rm<<1 (σ->0) , the diffusive term 
overcomes the convective term. The  dissipation time scale τd is the 

time scale for the dissipation of 
magnetic energy over length scale L.



Magnetic Reconnection in Solar and Space Plasmas ???

It turns out that RL>> 1 values are expected because of the extremely large 
length scales of solar system plasmas. For instance, RL~108 for solar flares, 
where as RL~1011 is appropriate for the solar wind. In calculating RL, we 
have identified the length scale L with the characteristic size of the plasma
under investigation.  It seems reasonable to neglect diffusive processes 
altogether in solar system plasmas. It must be noted, however, that the RL>> 
1 -values upon which the applicability of the frozen flux constraint was 
justified were derived using the large overall spatial scales of the systems 
involved. However, strict application of this constraint to the problem of the 
interaction of separate plasma systems leads to the inevitable conclusion 
that structures will form having small spatial scales, at least in one 
dimension: that is, the thin current sheets constituting the cell boundaries. It 
is certainly not guaranteed, that the effects of diffusion can be neglected in 
these boundary layers.



The MHD diffusion Equation at a 1-D current sheet 
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Consider a simple current sheet across which the magnetic field reverses:

+B , x>0
=B x,t  and B x,t=0

-B , x<0

From the1-D Induction equation (Diffusive term retained):
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The magnetic field diffuses and annihilates, as illustrated in the figure, the current 
sheet broadens, the current density j weakens but the total current J in the sheet 
remains constant. 



Magnetic Reconnection: the Sweet-Parker model (I)
In the Sweet-Parker model the reconnection is the result of an externally imposed flow, or 
magnetic perturbation. The magnetic and plasma flow fields are illustrated in the Figure. The 
system is two-dimensional and steady-state with the reconnecting magnetic fields being anti-
parallel, and of equal strength. At the boundary between the two fields, where the direction of B
suddenly changes a current sheet  of width l and length L>> l is formed. Plasma is assumed to 
diffuse into the current layer, along its whole length, at some relatively small inflow velocity vin;
is accelerated along the layer, and eventually expelled from its two ends at some relatively large 
outflow velocity vo. We have:
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Magnetic Reconnection: the Sweet-Parker model (II)
Continuing from the previous slide:
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Magnetic Reconnection: the Sweet-Parker model (III)
Continuing from the previous slide:
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Energy dissipation  rate: 

Energy density of B Volume Entering 

the Current Sheet/Time
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Magnetic Reconnection: the Sweet-Parker model (IV)

Comments on the Sweet-Parker model: 

The Sweet-Parker reconnection model is undoubtedly correct. It has been simulated
numerically many times, and was confirmed experimentally. The problem is that 
Sweet-Parker reconnection takes place far too slowly to account for many reconnection 
processes that are thought to take place in the solar system. 

For typical coronal conditions (with a large Lundquist number of S ≈ 108−1012) the 
reconnection rate is typically ≈ 10−4−10−6, which yields inflow speeds in the order of vin

≈ 1000 km s−1 ×10−5 ≈ 0.01 km s−1 and yields extremely thin current sheets with a 
thickness of l =L(vin/VA) ≈ L×10−5. Therefore, a current sheet with a length of L ≈ 1000 
km would have a thickness of only l ≈ 10 m. So the Sweet−Parker reconnection rate is 
much too slow to explain the magnetic dissipation in solar flare events.

Hence: We need smaller current sheet size L (some sort of fragmentation might be 
proven useful) or higher resistivity η (or Both !!!!).



Magnetic Reconnection: the Petschek model (I)

Geometry of the Petschek reconnection model. The geometry of the 
diffusion region (grey box) is a compact  current sheet ( ≈ δ) in the 
Petschek model; it also considers MHD shocks in the outflow region.



Magnetic Reconnection: the Petschek model (II)

A much faster reconnection model was proposed by Petschek (1964), which 
involved reducing the size of the diffusion region to a very compact area (∆ ≈ 
δ) that is much shorter than the Sweet−Parker current sheet (∆ >> δ). 
Because the length of the current sheet is much shorter, the propagation time 
through the diffusion region is shorter and the reconnection process becomes 
faster. However, in a given external area comparable with the length of the 
Sweet−Parker current sheet, a much smaller fraction of the plasma flows 
through the Petschek diffusion region with, where finite resistivity σ exists 
and field lines reconnect. 
Most of the inflowing plasma turns around outside the small diffusion region 
and shocks arise that represent an obstacle in the flow and thus are the main 
sites where inflowing magnetic energy is converted into heat and kinetic 
energy.
The reconnection rate was estimated ≈π/8ln(S) 



Tearing-Mode Instability and Magnetic Island Formation

Magnetic island formation by tearing-mode instability in the magnetic reconnection 
region. Magnetically neutral X and O points are formed at the boundary between 
regions of an oppositely directed magnetic field, with plasma flow in the directions 
indicated by the arrows. Tearing mode produces magnetic islands in 2D



Coalescence Instability
While tearing mode leads to filamentation of the 
current sheet, the resulting filaments are not 
stable in a dynamic environment. If two
neighboring filaments approach each
other they may enter the coalescence instability, 
which merges the two magnetic islands into a 
single one. Coalescence instability completes the 
collapse in sections of the current sheet, initiated 
by tearing-mode instability, and thus releases 
the main part of the free energy in the current 
sheet

Figure: Magnetic field (left panels) and current 
density (right panels) at characteristic times of 
the evolution. The regions, where anomalous
resistivity is excited, are shown shaded in the 
magnetic field plots



Some 3D Magnetic Reconnection Topologies
Classification of X-type magnetic 
reconnection topologies: (1) bipolar
reconnection between two open field lines; (2) 
tripolar reconnection between an open and a 
closed field line; and (3) quadrupolar
reconnection between two closed field lines. 
Pre reconnection field lines are rendered in 
light grey and at the time of reconnection 
with dotted lines, while the post reconnection 
field lines, are in dark grey. 2D versions, 
invariant in the third dimension (forming 
arcades) are shown in the upper row, 3D 
versions in the lower row. Pre reconnection 
field lines are located behind each other in the 
3D versions, but approach each other in the 
image plane during reconnection. Note that 
the number of neutral lines (marked with N, 
perpendicular to the image plane) is different 
in the corresponding 2D and 3D cases 



2D vs. 3D Magnetic Reconnection Topologies

Details of X-type magnetic reconnection topologies: 2D (left) and 3D (right).



Topology of 3D Null Points

• Dipolar domains: Wherever multiple magnetic dipoles occur, each one defines 
a domain that contains a volume of magnetic field lines with the same 
connectivity of positive to negative foot points.

• Separatrix surfaces: Different dipolar domains are separated by separatrix 
surfaces in 3D space.

• Separators: Intersections of 2D separatrix surfaces form 1D separator (A 
separator connects two null points).

• Null points: Intersections of 1D separators form 3D null points. 



Topology of 3D Null Points

Topology of 3D features for a quadrupolar (left) and a parasitic region (right). In the quadrupolar region, a new 
emerging dipole ( 2+, 2−) joins a pre-existing, older dipole region (1+ , 1−), which are separated by a separatrix 
surface. The intersection of the two separatrix surfaces intersects at the separator line, which intersects with the 
photospheric surface at magnetic null points. In the parasitic region (right) a unipolar flux region 2− emerges in the 
center of a pre-existing open field region with polarity 1+. The new regions is shielded from the pre-existing open field 
by a dome-like fan surface, where the symmetry axis is called the spine, containing a null point at the intersection with 
the fan dome.


