
Introduction to plasma

Part 03:  Magneto-hydrodynamics



Magnetohydrodynamics: plasma as a conducting fluid 

Historically Magnetohydrodynamics, abbreviated MHD, preceded the development 
of modern plasma physics. The original intent of MHD was to treat a plasma as a 
conducting fluid. The governing equations (Single Fluid Equations ) were adapted 
from fluid mechanics with appropriate modifications to account for electrical 
forces. 

This was accomplished by using a linear Ohm’s law, such as is often used to 
describe conducting media. Since, to a first approximation, plasmas are electrically 
neutral, the net charge density was assumed to be identically zero. Also, since fluid 
motions tend to be slow compared to the characteristic time scales of a plasma, 
the displacement current was assumed to be small compared to the conduction 
current. These assumptions, together with an appropriate equation of state, were 
sufficient to obtain a closed system of equations



MHD: Single Fluid Equations 

The total mass density of plasma ρm, the flow velocity of plasma v , the 
electric charge density ρq and the current density j are defined as 
follows:
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MHD: Single Fluid Equations 

Mass and Charge Conservation: The mass conservation equation, above, is 
identical to the well-known mass continuity equation of fluid dynamics; the 
fluid velocity is the mass weighted average of the flow velocities of the 
individual species (electron and ions). The same argument holds for the 
charge conservation equation taking into account the charge (instead of 
mass)  flow speed.
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MHD: Single Fluid Equations 

Momentum Equation: The left side of the equation represents the rate 
of change of the total momentum density. The right side is the total 
force applied per unit volume:  The first term is the force of the electric 
field; this term is generally dropped because it is much smaller than the 
jxB term. The latter represents the Magnetic Force. The last term  is the 
pressure gradient.

Generalized Ohm’s law:. It describes the electrical properties of the 
conducting fluid (σ is the plasma conductivity).
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MHD: Single Fluid Equations 

The equation of state: Since the moment equations do not define a 
closed system of equations, we must choose an equation of state in 
order to close the system of equations. The equation of state specifies 
the plasma pressure as a function of the temperature and density. Τhe 
equation of state is commonly assumed to be a power law (see above). 
The exponent γ is called the polytrope index. By choosing various values 
for γ , a variety of situations can be represented. For example: For 
isothermal processes γ =1 we have while for adiabatic γ =(n+2)/n which 
is 5/3 for monoatomic gas.
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MHD: All Single Fluid Equations 
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We have 15 equation in 
the 15 unknowns, p, ρm, 
ρq, v, j, E and B.



MHD: Magnetic Pressure

When there is a gradient in the plasma pressure, then under static equilibrium 
conditions there will be a gradient in the magnetic pressure. From the momentum 
transport equation (steady state, all time derivatives=0, and having dropped the 
small E.ρq term) and the Amber Law we have, eliminating j:
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MHD: Derivation of the Induction equation
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MHD: More on the Induction equation
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If the fluid moves with a typical speed V and a typical length scale L then, from 
order of magnitude calculations, we obtain the magnetic Reynolds number Rm. The 
magnetic Reynolds number provides a criterion which indicates if the first term 
(convective) or the second (diffusive) on the right side of the equation dominates.



MHD: More on the Induction equation: Perfectly conducting limit
When the magnetic Reynolds number Rm>>1 (η->0) the diffusive term in the induction equation 
vanishes. The induction equation for an ideal conductive fluid is shown below. Based on it we will 
demonstrate the Alfvén's theorem, which states “that in a fluid with infinite electric conductivity, 
the magnetic field is frozen into the fluid and has to move along with it“, Suppose that curve C
moves with the fluid, with each point on the curve moving to a new point Vdt after a time dt.
The rate of change of the magnetic flux through curve C is given by the sum of two terms The 
first gives the rate of change of the flux due to the explicit time dependence of B, and the second 
the rate of change of the flux due to the motion of the curve C. :
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MHD: More on the Induction equation: Diffusive limit
When the magnetic Reynolds number Rm<<1 (σ->0) , the diffusive term overcomes the 
convective term. In an electrically resistive fluid with large values of η, the magnetic field is 
diffused away very fast, and the Alfvén's Theorem cannot be applied.The magnetic energy is 
dissipated to heat and other types of energy. The induction equation becomes:
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The  dissipation time scale τd is the time 
scale for the dissipation of magnetic 
energy over a length scale L.


